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Electronic Voting

Steady adoption including for national voting in Estonia,
Switzerland, France, and Australia, as well as for corporations
and organisations.
Benefits

Ï Efficiency (speed and cost)
Ï Higher turnout
Ï Verifiability
Ï Distribution
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Electronic Voting - The Protocol

Figure: Voting protocol with sets of shuffle servers Si and decryption
servers Dj [ABGS23].
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Deployed schemes based on discreet log-like assumptions.
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Notation

Ï We denote Rq = Z[X ]
(Xd+1,q) and Rp = Z[X ]

(Xd+1,p) with p < q.

Ï We denote by Dσ the discrete gaussian distribution with
standard deviation σ and byU (Rq) the uniform
distribution over Rq.

Ï SB := {a ∈R ; ‖a‖∞ ≤B}.
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The NTRU Problem

(Search) NTRUq,d ,σ

Sample f ,g ←D2
σ with rejection if f not invertible in Rq and set

h = g/f mod q. The search NTRUq,d ,σ problem is, given h, to
recover any rotation (X i f ,X ig) of the pair (f ,g).

Denote by H , F , and G the circulant matrices corresponding to
h, f , and g .
NTRU Lattice

L H ,q :=
(
qId H
0 Id

)
·Z2d .

Dense Sublattice

L GF :=
(
G
F

)
·Zd ⊂L H ,q .
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Why NTRU?

Ï More compact/faster primitives utilizing ZKPs
Ï Faster KEMs as compared to RLWE-based schemes
Ï Very receptive to NTT speedups
Ï Long standing problem
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NTRUHardness

TABLE NTRU Cryptanalysis

1998 • NTRU first appears,
Hoffstein, Pipher, Silverman
[HPS98]

2016 • ‘Subfield lattice attacks’ for
overstretched params
[ABD16, CJL16]

2017 • Asymptotic ‘fatigue point’
upper bound, Kirchner and
Fouque [KF17]

2021 • Lower fatigue point and
concrete confirmation in
ternary case [DvW21]



Overstretched NTRU

The best known attacks on NTRU are based on the LLL lattice
reduction algorithm, which searches for the unusually short
vector vector

(
g
f

)
inL H ,q. However...

... when q becomes very large (with respect to d) this problem
becomes easy.

Figure: Progressive BKZ with d = 127, σ2 = 2/3 [DvW21].
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Concrete Fatigue Point

Concrete fatigue point (σ2 = 2/3) [DvW21]
Fixing d and σ, the point at which Pr(DSD)>Pr(SKR) is
determined (experimentally) as q = 0.004 ·d2.484.

What is the concrete hardness of NTRU for√
2/3<σ<pq ?

Knowledge of such behaviour has proven crucial for fine-tuning
RSIS and RLWE-based NIST-standardised scheme parameters
e.g. Crystals Dilithium, which uses non-ternary secrets.
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Concrete Fatigue Point - This Work

Concrete fatigue point (general σ) - This work
Fixing d and σ, we determine the point at which
Pr(DSD)>Pr(SKR) is determined (experimentally) as

q = 0.0058 ·σ2 ·d2.484.

Crucially, the fatigue point increases quadratically in σ.
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Concrete Fatigue Point - This Work

Figure: Experimental fatigue point values for a range of σ, calculated
using BKZ with 8 tours on matrix NTRU instances. The
straight-colored lines show the estimated values using the (modified)
estimator from [DvW21].



Concrete Fatigue Point - This Work

Figure: Experimental values for q/σ2 illustrate that the fatigue point,
when adjusted for σ, is modeled by q/σ2 = 0.0058 ·d 2.484.



A New E-Voting Scheme

Figure: Voting protocol with sets of shuffle servers Si and decryption
servers Dj [ABGS23].



A New E-Voting Scheme - Building Blocks

Shuffle
Ï Following framework of [ABGS22], adapted for
NTRU-based PKE.

Distributed decryption
Ï Based on NTRUEncrypt - Steinfeld & Stehlé, 2013. Variant
using perfect correctness and security relying both on
RLWE andNTRU.

Zero-knowledge proofs
Ï Required for verifiability of shuffle and distributed
decryption.
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Distributed Decryption - NTRU

KeyGen(λ)
Ï h := g/f , with f ,g ←Dσ and f ≡ 1 mod p.
Ï For i ∈ [N −1], ski ←U (Rq) and skN := f −∑

i∈[N−1] ski .
Ï pk= h, sk= (g , f ).

Enc(m)
Ï c = p(hs +e)+m, where s ,e ←Sν and p is a small prime.

DistDec(c,ski)
Ï dsi := ski ·c +pEi , where Ei ←S240

Comb({dsi })

Ï v =
(∑

i∈[N] dsi mod q
)

mod p

=
(
f ·c +p∑

i∈[N] Ei mod q
)

mod p

=
(
p(gs + fe)+ fm+p∑

i∈[N] Ei mod q
)

mod p
=m ... IF ...



Distributed Decryption - NTRU
KeyGen(λ)

Ï h := g/f , with f ,g ←Dσ and f ≡ 1 mod p.
Ï For i ∈ [N −1], ski ←U (Rq) and skN := f −∑

i∈[N−1] ski .
Ï pk= h, sk= (g , f ).

Enc(m)
Ï c = p(hs +e)+m, where s ,e ←Sν and p is a small prime.

DistDec(c,ski)
Ï dsi := ski ·c +pEi , where Ei ←S240

Comb({dsi })

Ï v =
(∑

i∈[N] dsi mod q
)

mod p

=
(
f ·c +p∑

i∈[N] Ei mod q
)

mod p

=
(
p(gs + fe)+ fm+p∑

i∈[N] Ei mod q
)

mod p
=m ... IF ...



Distributed Decryption - NTRU
KeyGen(λ)

Ï h := g/f , with f ,g ←Dσ and f ≡ 1 mod p.
Ï For i ∈ [N −1], ski ←U (Rq) and skN := f −∑

i∈[N−1] ski .
Ï pk= h, sk= (g , f ).

Enc(m)
Ï c = p(hs +e)+m, where s ,e ←Sν and p is a small prime.

DistDec(c,ski)
Ï dsi := ski ·c +pEi , where Ei ←S240

Comb({dsi })

Ï v =
(∑

i∈[N] dsi mod q
)

mod p

=
(
f ·c +p∑

i∈[N] Ei mod q
)

mod p

=
(
p(gs + fe)+ fm+p∑

i∈[N] Ei mod q
)

mod p
=m ... IF ...



Distributed Decryption - NTRU
KeyGen(λ)

Ï h := g/f , with f ,g ←Dσ and f ≡ 1 mod p.
Ï For i ∈ [N −1], ski ←U (Rq) and skN := f −∑

i∈[N−1] ski .
Ï pk= h, sk= (g , f ).

Enc(m)
Ï c = p(hs +e)+m, where s ,e ←Sν and p is a small prime.

DistDec(c,ski)
Ï dsi := ski ·c +pEi , where Ei ←S240

Comb({dsi })

Ï v =
(∑

i∈[N] dsi mod q
)

mod p

=
(
f ·c +p∑

i∈[N] Ei mod q
)

mod p

=
(
p(gs + fe)+ fm+p∑

i∈[N] Ei mod q
)

mod p
=m ... IF ...



Distributed Decryption - NTRU
KeyGen(λ)

Ï h := g/f , with f ,g ←Dσ and f ≡ 1 mod p.
Ï For i ∈ [N −1], ski ←U (Rq) and skN := f −∑

i∈[N−1] ski .
Ï pk= h, sk= (g , f ).

Enc(m)
Ï c = p(hs +e)+m, where s ,e ←Sν and p is a small prime.

DistDec(c,ski)
Ï dsi := ski ·c +pEi , where Ei ←S240

Comb({dsi })

Ï v =
(∑

i∈[N] dsi mod q
)

mod p

=
(
f ·c +p∑

i∈[N] Ei mod q
)

mod p

=
(
p(gs + fe)+ fm+p∑

i∈[N] Ei mod q
)

mod p
=m

... IF ...



Distributed Decryption - NTRU
KeyGen(λ)

Ï h := g/f , with f ,g ←Dσ and f ≡ 1 mod p.
Ï For i ∈ [N −1], ski ←U (Rq) and skN := f −∑

i∈[N−1] ski .
Ï pk= h, sk= (g , f ).

Enc(m)
Ï c = p(hs +e)+m, where s ,e ←Sν and p is a small prime.

DistDec(c,ski)
Ï dsi := ski ·c +pEi , where Ei ←S240

Comb({dsi })

Ï v =
(∑

i∈[N] dsi mod q
)

mod p

=
(
f ·c +p∑

i∈[N] Ei mod q
)

mod p

=
(
p(gs + fe)+ fm+p∑

i∈[N] Ei mod q
)

mod p
=m ... IF ...



Distributed Decryption - Correctness Condition

∥∥∥∥∥p(gs + fe)+ fm+p
∑

i∈[N]
Ei

∥∥∥∥∥
∞

< q/2,

⇐=

p ·d ·σ · (2ν+1/2)(1+240)< q/2,
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Choosing Parameters

Recall distributed decryption requires that

p ·d ·σ · (2ν+1/2)(1+240)< q/2. (1)

Now, we can use the estimator of [DvW21] to select parameters
so that

Ï (1) is satisfied and
Ï NTRUq,d ,σ is hard (128 bits of security).
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Voting Scheme Efficiency

Figure: Per vote comparison to [ABGS23] of ciphertexts, shuffle
proofs, decryption proofs, and overall with 4 servers. Shuffles are
sequential, while decryption is run in parallel.
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Summary Of Results

Ï Experimental generalisation of NTRU concrete fatigue
point.

Ï Recompute secure parameters for selected schemes.
Ï New voting protocol based on NTRU PKE.
Ï Compute concrete efficiency of this scheme and provide
efficient C-implementation.
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Future Directions

Ï Return codes. To extend our scheme and ensure voter
verifiability, we need to add return codes to our scheme.
This can be done by extending the work of [?] from BGV to
NTRU. This also includes verifiable encryption.

Ï Amore efficient noise drowning technique for distributed
decryption.

Ï Using more efficient zero-knowledge techniques like
SNARKS for better amortization.
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Future Directions

Thank you.
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