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SMOOTHING



SMOOTHING
𝒞 = {000,111} e = unif. wt. 0,1 c + e∼
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- Given  of dim. , quantify closeness between  and  

- Use statistical / -distance: 

- Measure "largeness" as  where 

𝒞 ≤ 𝔽n
2 k u ∼ Unif (𝔽n

2/𝒞) e mod 𝒞
ℓ1

t = 𝔼[ |e | ] |x | = |{i ∈ [n] : xi = 1} |

SMOOTHING BOUNDS

Δ(u, e mod 𝒞) = max
S⊆𝔽n

2/𝒞
(Pr[u ∈ S] − Pr[e mod 𝒞 ∈ S])

Question: How "large" must the noise  be to have 

 ? 

e

Δ(u, e mod 𝒞) ≤ 𝗇𝖾𝗀𝗅(n)

=
1
2 ∑

x∈𝔽n
2/𝒞

Pr[u = x] − Pr[e mod 𝒞 = x]



-Wiretap channel 
- [Mirghsemi-Belfiore'14] (Gaussian noise) 

-Lattice trapdoors 
- [Gentry-Peikert-Vaikuntanathan'08] 

-Mixing on Markov chains 

-Reductions to average-case problems 

-we'll discuss this later…

MOTIVATIONS
ENCODER CHANNEL DECODER



- Use Gaussian noise 

- Poisson summation formula: sum 
over lattice becomes sum of Fourier 
transform over dual lattice 

- Tail bounds for Gaussians 
(Banaszczyk 93) 

- More recently [ADRS15]: LP bounds 
[L79]

TRANSLATING STRATEGY

- Use Bernoulli noise 

- Poisson summation formula applies 
to codes too! Get summation over 

 

- Code version quite weak… 

- Code LP bounds quite effective! 
[MRRW77]

𝒞* = {c* : ⟨c*, c⟩ = 0 ∀c ∈ 𝒞}

LATTICES CODES

Lattice strategy 
translates flawlessly!

Result fairly weak… 
Can we improve it?

[MR07, GPV08]



OUR STRATEGY



- For function  on ,  denotes its periodization w.r.t.  

- Naturally view as function on  

- Given distribution  of noise , distribution of  is 

f 𝔽n
2 f 𝒞 𝒞

𝔽n
2/𝒞

ν e ∼ 𝔽n
2 e mod 𝒞 ν𝒞

PERIODIZATION

Pr[e mod 𝒞 = x] = ∑
y ∈ 𝔽n

2

y mod 𝒞 = x

Pr[e = y]

= ∑
c∈𝒞

Pr[e = x + c] = ∑
c∈𝒞

ν(x + c)

 made uniform on 
cosets of : 

 

f
𝒞

f 𝒞(x) = f 𝒞(x + c)
∀x ∈ 𝔽n

2, c ∈ 𝒞

f 𝒞(x) = ∑
c∈𝒞

f(c + x)

= ν𝒞(x)



- Let  for all  (uniform distribution) 

-  distribution of noise  (assume radial) 

- Define  and 

μ(x) = 2−(n−k) x ∈ 𝔽n
2/𝒞

ν e

f = 2n−kν g = 2n−kμ

SETUP

2 ⋅ Δ(μ, ν𝒞) = ∑
x∈𝔽n

2/𝒞

μ(x) − ν𝒞(x)

=
1

2n−k ∑
x∈𝔽n

2/𝒞

g(x) − f 𝒞(x) = ∥g − f 𝒞∥L1

 only  
function of 

ν(x)
|x |

relative density functions



- We can upper bound 

- The -norm interacts well with the Fourier Transform…L2

STEP 1:  
CAUCHY-SCHWARZ

∥g − f 𝒞∥L1
≤ ∥g − f 𝒞∥L2

For , : 

     

    

f : U → ℂ p ≥ 1

∥f∥ℓp
:= ( ∑

x∈U

| f(x) |p )
1/p

∥f∥Lp
:= ( 1

|U | ∑
x∈U

| f(x) |p )
1/p



- Let  be functions (e.g., densities) 

- Scalar product: ; norm  

- Orthonormal basis of characters:  for  defined as  

- Fourier transform:  defined by  

- Yields Fourier decomposition:  

- Parseval's Identity: 

f, g : 𝔽n
2/𝒞 → ℂ

⟨ f, g⟩ =
1

2n−k ∑
x∈𝔽n

2/𝒞

f(x)g(x) ∥f∥L2
=

1
2n−k ∑

x∈𝔽n
2/𝒞

| f(x) |2

χc* c* ∈ 𝒞* χc*(x) = (−1)c*⋅x

̂f : 𝒞* → ℂ ̂f(c*) = ⟨ f, χc*⟩

f(x) = ∑
c*∈𝒞*

̂f(c*)χc*(x)

∥f∥L2
= ∥ ̂f∥ℓ2

= ∑
c*∈𝒞*

| ̂f(c*) |2

FOURIER FOR COSET FUNCTIONS



- Need to compute fourier transform of periodization of a 
function

STEP 2: PARSEVAL'S IDENTITY

g − f 𝒞

L2

= ̂g − f 𝒞

ℓ2

= ̂g − ̂f 𝒞

ℓ2

= ∑
c*∈𝒞*

( ̂g(c*) − ̂f 𝒞(c*))
2



STEP 3: POISSON SUMMATION
f ̂f

f𝒞 ̂f𝒞

Periodization Restriction 
(renormalized)

Fourier

Fourier
= 2k ̂f |𝒞*



- Therefore: 

- Thus:

PUTTING IT TOGETHER
̂f 𝒞(0) = 2k ̂f(0) =

2k

2n ∑
x∈𝔽n

2

f(x)(−1)⟨x,0⟩ =
2k

2n ∑
x∈𝔽n

2

2n−k ⋅ ν(x) = 1

̂g (c*) =
1

2n−k ∑
x∈𝔽n

2/𝒞

2n−kμ(x) ⋅ (−1)⟨x,c*⟩ = {1 c* = 0
0 otherwise

∑
c*∈𝒞*

( ̂g (c*) − ̂f 𝒞(c*))
2

= 2k ∑
c*∈𝒞∖{0}

̂f(c*)2 = 2n ∑
c*∈𝒞∖{0}

̂ν(c*)2



- Essentially, we replaced triangle inequality by Cauchy-Schwarz 

- [MR07,GPV08] approach would get following bound:

COMPARISON TO PREVIOUS APPROACH

2Δ(μ𝒞, ν𝒞) ≤ 2n ∑
c*∈𝒞∖{0}

| ̂ν(c*) |

Our bound  is smaller2n ∑
c*∈𝒞∖{0}

| ̂ν(c*) |2

a2 + b2 ≤ (a + b)2



- Above: 

REMAINING CHALLENGE:

2n ∑
c*∈𝒞∖{0}

̂ν(c*)2 = 2n ∑
ℓ≥dmin(𝒞*)

Nℓ(𝒞*) ̂ν(ℓ)2 ?

Nℓ(𝒞*) = |{c* ∈ 𝒞* : |c* | = ℓ} |

dmin(𝒞*) = min{ |c* | : c* ∈ 𝒞*∖{0}}

How to bound



TWO CASES

RANDOM CODES/
LATTICES 

- Easier computations - Guide choice of smoothing 
distribution

ARBITRARY CODES/
LATTICES 

- Case of interest - Approach guided by 
random case



RANDOM CODES



RANDOM CODES

𝔼 [2Δ(μ, ν𝒞)] ≤ 𝔼 2n ∑
ℓ>0

Nℓ(𝒞*) ̂ν(ℓ)2

- For random dimension  : k 𝒞 ≤ 𝔽n
2

𝔼 [Nℓ(𝒞*)] = 2−k (n
ℓ)

≤ 2n ∑
ℓ>0

𝔼 [Nℓ(𝒞*)] ̂ν(ℓ)2

= 2n ∑
ℓ>0

2−k (n
ℓ) ̂ν(ℓ)2

Jensen's 
Inequality

Easy to 
estimate!



- Let  be distribution of Bernoulli noiseφp(x) = p|x|(1 − p)n−|x|

BERNOULLI NOISE

φ̂p(x) =
1
2n

(1 − 2p)|x|

𝔼 [2Δ(μ, φ𝒞
p )] ≤ 2n ∑

ℓ>0

2−k (n
ℓ) φ̂p(ℓ)2

≤ 2n
n

∑
ℓ=0

2−k (n
ℓ) (2−n(1 − 2p)ℓ)2

= 2−k (1 + (1 − 2p)2)nBinomial 
Theorem



- To have , suffices for  

 where  

- Following traditional lattice approach: get upper bound 

- To make , need 

2−k (1 + (1 − 2p)2)n = 𝗇𝖾𝗀𝗅(n)

p ≥
1
2 (1 − 2R − 1) R = k/n

𝗇𝖾𝗀𝗅(n) p ≥ 1 − 2−(1−R)

COMPARISON WITH TRADITIONAL APPROACH

𝔼 [2Δ(μ, φ𝒞
p )] ≤ 2n−k(1 − p)n



BETTER! BUT…
p

R = k/n

Orange: Original approach 
Blue: Our approach 

Green: Gilbert-Varshamov Bound 



- Define  so that  

- If , could hope to have  

- Can we achieve this with our approach?

wGV = wGV(n, k)

w = 𝔼( |e | ) ≥ wGV Δ(μ, ν𝒞) ≤ 𝗇𝖾𝗀𝗅(n)

GILBERT-VARSHAMOV BOUND

( n
wGV) ≈ 2n−k = |𝔽n

2/𝒞 |

Yes! But for different noise distribution…



NOISE FROM THE SPHERE



- Let  be a uniformly random vector of weight . Has 
distribution function 

- Above,  is a Krauwtchouk polynomial; give orthonormal 
basis for radial functions

e w

Kw( ⋅ )

UNIFORM SPHERE NOISE

ψw(x) =
1𝕊w

(x)

( n
w)

= {
1

( n
w)

|x | = w

0 otherwise
⟹ ψ̂w(x) = 2−n ⋅

Kw( |x | )

( n
w)



- Identity: 

UNIFORM SPHERE NOISE
n

∑
ℓ=0

(n
ℓ)
2n

Kw(ℓ)2

( n
w)

= 1

𝔼 [2Δ(μ, ψ𝒞
w )] ≤

2n

( n
w) 2k ∑

ℓ>0

(n
ℓ)
2n

Kw(ℓ)2

( n
w)

≤
2n−k

( n
w)

 suffices!w ≈ wGV



- Bernoulli distribution  is very concentrated:  
with high probability 

- Intuitively:  and  should smooth just about the same… 
and this is true!

φp |e | = (1 ± ε)pn

φp ψpn

WHAT ABOUT BERNOULLI?

Δ(μ, φ𝒞
p ) ≤

(1+ε)pn

∑
w=(1−ε)pn

Δ(μ, ψ𝒞
w ) + 2−Ω(n)

 suffices!p ≈ wGV /n



ARBITRARY CODES



- Given arbitrary  code , need to bound 's 

- Use LP bounds [MRRW77, ABL01]
[n, k, d] 𝒞 Nℓ(𝒞*)

LP BOUNDS

Thm: [ABL01] Let  and . 

Then 

 

where  is a function related to Krawtchouk polynomials.

δ* = dmin(𝒞*)/n δ*⊥ =
1
2

− δ*(1 − δ*)

Nℓ(𝒞*) ≤
( n

δ*⊥n)
2n (n

ℓ) ℓ/n ∈ (δ*,1 − δ*)

2nα(ℓ/n,δ*) otherwise

≈ 2−c(δ*)⋅n (n
ℓ)

α( ⋅ , ⋅ ) < 1



PROBLEM WITH UNIFORM SPHERE NOISE
Suppose 1 = (1,…,1) ∈ 𝒞*

⟹ ∀c ∈ 𝒞, |c | ≡ 0 (mod 2)

⟹ ∀c ∈ 𝒞, e ∈ 𝕊w, |c + e | ≡ w (mod 2)

Can't have ; doesn't even touch half the vectors!c + e ≈ uniform

In general:  has large weight vectors 
 large

𝒞*
⟹ 2n ∑

ℓ≥dmin(𝒞*)

Nℓ(𝒞*)ψ̂w(ℓ)2 ψ̂w(x) = 2−n ⋅
Kw( |x | )

( n
w)



TRUNCATED BERNOULLI
Not so bad: ∑

ℓ>(n−dmin(𝒞*))/2

Nℓ(𝒞*) ≤ 1

Bernoulli noise does not have this "parity" problem  
φ̂p(x) = 2−n (1 − 2p)|x|

Our solution: Truncated Bernoulli  
Sample  conditioned on e ∼ Ber(p)n |e | ∈ (p ± ε)n



BACK TO LATTICES



- In case of lattice , if 

-  is uniform distribution over ; 

-  radial distribution over :

Λ
μ ℝn/Λ
ν ℝn

Δ(μ, νΛ) ≤
1
2 ∑

x∈Λ*∖{0}

| ̂ν(x) |2

Choices for  ν

Gaussian noise: 
Ds(x) = 1

sn exp((−π |x |2 /s)2)
Uniform ball noise: 

βw(x) =
1ℬw(x)

Vn(w) =
1{ |x |2 ≤ w}

Vn(w)



-Covolume  Haar random lattices satisfy that, for any *nice* 
function , 

M
g

RANDOM LATTICES

𝔼
Λ( ∑

⃗x∈Λ∖{0}

g(x)) =
1
M ∫ℝn

g(x) dx

M = Vol(ℝn/Λ) = | det(Λ) |

⟹ 𝔼
Λ

(2Δ(μ, βΛ
w )) ≤ M

Vn(w)
(argue as  

with codes)

In particular, if :w > n/2πeM1/n < 2−Ω(n)

Gaussian heuristic!

Natively 
worse for 

Gaussian…

Can analogously 
argue Gaussian 

"close" to uniform 
ball noise!

Used to analyse lattice dual attack: [DP23] 



ARBITRARY LATTICES Extra ingredients:

LP bound  
[Kabatiansky-Levenshtein'78]

Summing over annuli  
[Cohn-Elkies'03] 

2Δ(μ, βΛ
w ) ≤

1
Vn(w)

∞

∑
j=0

Nj ⋅ φj

where 

- ,  

-  

-
t0 = λ1(Λ*) tj+1 := (1 + 1/n)tj
Nj = #{x* : tj ≤ |x* |2 < tj+1}
φj = Vn(w)−1 max { ̂1ℬw

(x)2 : tj ≤ |x |2 < tj+1}

bound with LP

bound with 
asymptotics 

of Bessel  
functions



COMPARISON
Distribution Proof strategy Smooth. factor Source

Gaussian PSF+TI+BT [MR07]

Gaussian PSF+TI+LP [ADRS15]

Gaussian PI+CS+LP Our work

Unif. Ball PI+CS+LP Our work

Gaussian Unif. + Trunc. Our work

min  s.t.  
 

when 

F > 0
Δ(νΛ, μ) ≤ 2−Ω(n)

𝔼
e∼ν

( |e |2 ) = F n
λ*1 (Λ)

  
from LP bound
CKL ≈ 20.401

1/(2π) ≈ 0.159

CKL/(2π e) ≈ 0.127

CKL/(2π 2e) ≈ 0.090

CKL/(2πe) ≈ 0.077

CKL/(2πe) ≈ 0.077

For random -ary lattices: [LLB'22] get same (optimal) bound as usq



WORST-CASE TO AVERAGE-CASE REDUCTIONS  
FOR CODES



LEARNING PARITY WITH NOISE

m ∈ 𝔽k
2

Goal: recover  m

Can request samples

(a, ⟨a, m⟩ + b)

a $⟵ 𝔽k
2

b $⟵ Ber(p)
p < 1

2

Notation: LPN(k, p)



- Parameters: , :  

- Given:  

- matrix , and  

- vector  where  and ,  

- Goal: find 

t, k, n ∈ ℕ t, k ≤ n DP(n, k, t)

G ∈ 𝔽k×n
2

y = mG + v m ∈ 𝔽k
2 v ∈ 𝔽n

2 |v | = t
m

DECODING PROBLEM

G , G
v+

= y

m



REDUCTION Algorithm   
solving 

𝒜
LPN(k, p)Goal: create algorithm 

 solving  
On input :  
Simulate 

ℬ DP(n, k, t)
G, y
𝒜

When  requests a new sample: 

- Sample  from smoothing distribution 

- Reply with 

𝒜
e ∼ 𝔽n

2
(eG⊤, ⟨e, y⟩)

   smooths 
code checked by 

eG⊤ ≈ a ⟺ e
G

 ⟨e, y⟩ = ⟨eG⊤, s⟩ + ⟨e, v⟩
≈ ⟨a, s⟩ + b

Minor issue:  not independent 
Bigger issue:  for very small …

eG⊤ and ⟨e, v⟩
b = ⟨e, v⟩ ∼ Ber( 1

2 −ε) ε



- [BLVW19, YZ21, DR22]: all obtain the same qualitative result: 

- Also require "balanced" assumption 

- There (should be) some information-theoretic barriers…  - [BCD'23]: search-to-decision reduction for codes via oracle 
comparison method; uses [DR22] smoothing bound for Bernoulli

"BEST" RESULTS…

 hardLPN(k, 1
2 − 1

n4 )  hardDP(kO(1), k, O(log2 k))⟹

Conclusion: there must be a better result possible… right?



SUMMARY



SMOOTHING BOUNDS
0

0.25

0.5

0.75

1

00 01 10 11

Proofs that  or Δ(u, e mod 𝒞) Δ(y, e mod Λ) ≤ 𝗇𝖾𝗀𝗅(n)
3 step recipe: 

1: Cauchy-Schwarz 
( )L1 → L2

2: Plancherel 
(  in Fourier)L2 → ℓ2

3: Poisson Sum  
(Fourier of period.)

Δ(μ, ν𝒞) ≤ 2n ∑
c*≠0

̂ν(c*)2



RANDOM CODES RANDOM LATTICES

:  

: 

Ber(p)n p ≥
1
2 (1 − 2R − 1)

Sph(w) w ≥ wGV

:  

: 

Gau(s) s ≥ M1/n/ 2
Ball(w) w ≥ n/2πeM1/n =: wGH

Truncation, concentration, 
convex combination: 

 suffices 
for 

⟹ p ≥ wGV /n
Ber(p)

Truncation, concentration, 
convex combination: 

 suffices 
for 

⟹ s ≥ wGH 2π/n
Gau(s)

𝔼v∼Ds
( |v | ) = s n/(2π)



ARBITRARY CODES ARBITRARY LATTICES

Bound 's w/ LP [AKL01] 

Use truncated Bernoulli 

Deal with  high weight 

Nℓ(𝒞*)

≤ 1 c*

Bound 's w/ LP [L79] 

Can use uniform ball (or Gaussian) 

Sum over annuli [CE03]

Nℓ(Λ*)



- Can we improve worst-case to average-case reductions?  

- Or are there barriers? 

- Maybe different notions of "closeness" are useful? 

- Reductions for structured codes? 

- noise distributions for, e.g., quasi-cyclic codes are quite hard 
to interpret…

OPEN QUESTIONS

Thank you! Questions?


