Quantum Lattice Enumeration in Limited Depth

Nina Bindel¹ Xavier Bonnetain² Marcel Tiepelt³ Fernando Virdia⁴

¹ SandboxAQ, Palo Alto, CA, USA

² Université de Lorraine, CNRS, Inria, Nancy, France

³ KASTEL, Karlsruhe Institute of Technology, Karlsruhe, Germany

⁴ NOVA ID FCT, NOVA LINCS, Portugal

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
●00	0000	000	000	00000	00000	000

• Lattice-related hardness assumptions are some of the most popular tools when building quantum-resistant cryptographic primitives

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
●00	0000	000		00000	00000	000

- Lattice-related hardness assumptions are some of the most popular tools when building quantum-resistant cryptographic primitives
- The concrete hardness of the shortest vector problem (SVP) is at the core of the security estimations for lattice-based primitives

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
●00	0000	000	000	00000	00000	000

- Lattice-related hardness assumptions are some of the most popular tools when building quantum-resistant cryptographic primitives
- The concrete hardness of the shortest vector problem (SVP) is at the core of the security estimations for lattice-based primitives
- The cost of SVP solvers is often the leading term in the cost of algorithms for solving lattice problems

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search
000	0000	000	000

Q. Enum 00000 Estimates 00000 Conclusion 000

• There are many approaches for building an SVP solver

ntro Q	. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	000	000	000	00000	00000	000

- There are many approaches for building an SVP solver
- So far, all cryptographically relevant solvers are classical routines

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- There are many approaches for building an SVP solver
- So far, all cryptographically relevant solvers are classical routines
- At least two of these, sieving and enumeration, can be "compiled" into quantum algorithms using black-box methods [LMv13, KMPM19, ANS18, BCSS23]

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- There are many approaches for building an SVP solver
- So far, all cryptographically relevant solvers are classical routines
- At least two of these, sieving and enumeration, can be "compiled" into quantum algorithms using black-box methods [LMv13, KMPM19, ANS18, BCSS23]
- While the resulting asymptotic quantum speedups are understood, there's not a lot of work on their concrete cost; only sieving has been explored [AGPS20]

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
00●	0000	000	000	00000	00000	000

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
00●	0000	000	000	00000	00000	000

• Q. Enum algorithms were first demonstrated by Aono *et al.* [ANS18]; asymptotically, they provide a quadratic speedup

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
00●	0000	000	000	00000	00000	000

- Q. Enum algorithms were first demonstrated by Aono *et al.* [ANS18]; asymptotically, they provide a quadratic speedup
- Our work looks at the "max-depth" setting, where quantum computation is noisy, and long serial computation causes memory to "decohere" [Nat16, Pre18]

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
00●	0000	000	000	00000	00000	000

- Q. Enum algorithms were first demonstrated by Aono *et al.* [ANS18]; asymptotically, they provide a quadratic speedup
- Our work looks at the "max-depth" setting, where quantum computation is noisy, and long serial computation causes memory to "decohere" [Nat16, Pre18]
- Our results suggest that, as is the case for Grover search against block ciphers [JNRV20], quantum speedups in this setting **may** not apply

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	•000	000	000	00000	00000	000

Quantum computation

To estimate the cost of quantum enumeration, we work in the "circuit model".

• This is a quantum circuit of width 3, depth 5 and gate count 5.

- This is a quantum circuit of width 3, depth 5 and gate count 5.
- Here the wires are qubits, the nodes are gate evaluations.

- This is a quantum circuit of width 3, depth 5 and gate count 5.
- Here the wires are qubits, the nodes are gate evaluations.
- The cost of a circuit can be expressed in terms of different metrics, e.g. by counting wires, components, depth, area...

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0●00	000	000	00000	00000	000
[JS19] suggest that one can compare th classical CPU cycles.			ne $\#$ of quantum	gates ("G me	etric") with	

⁰Image courtesy of Sam Jaques.

⁰Image courtesy of Sam Jaques.

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	00●0	000	000	00000	00000	000
Quantu	m memory					

• Classical memory is easy to error-correct, quantum memory is not

- Classical memory is easy to error-correct, quantum memory is not
- Currently used qubits need near-absolute-zero temperatures for data persistence; operating on them quickly leads to signal loss

- Classical memory is easy to error-correct, quantum memory is not
- Currently used qubits need near-absolute-zero temperatures for data persistence; operating on them quickly leads to signal loss

New constraint: max-depth (*MD*)

Consider limiting the depth of quantum circuit [Nat16]:

- Classical memory is easy to error-correct, quantum memory is not
- Currently used qubits need near-absolute-zero temperatures for data persistence; operating on them quickly leads to signal loss

Conclusion

New constraint: max-depth (MD)

Consider limiting the depth of quantum circuit [Nat16]:

• $MD = 2^{40} \approx$ "gates that presently envisioned quantum computing architectures are expected to serially perform in a year"

- Classical memory is easy to error-correct, quantum memory is not
- Currently used qubits need near-absolute-zero temperatures for data persistence; operating on them quickly leads to signal loss

Conclusion

New constraint: max-depth (MD)

Consider limiting the depth of quantum circuit [Nat16]:

- $MD = 2^{40} \approx$ "gates that presently envisioned quantum computing architectures are expected to serially perform in a year"
- $MD = 2^{64} \approx$ "gates that current classical computing architectures can perform serially in a decade"

- Classical memory is easy to error-correct, quantum memory is not
- Currently used qubits need near-absolute-zero temperatures for data persistence; operating on them quickly leads to signal loss

Conclusion

New constraint: max-depth (MD)

Consider limiting the depth of quantum circuit [Nat16]:

- $MD = 2^{40} \approx$ "gates that presently envisioned quantum computing architectures are expected to serially perform in a year"
- $MD = 2^{64} \approx$ "gates that current classical computing architectures can perform serially in a decade"
- $MD = 2^{96} \approx$ "gates that atomic scale qubits with speed of light propagation times could perform in a millennium"

Intro	Q. Cryptanalysis	Enui
000	0000	000

Enumeration 000 Q. Tree Search

Q. Enum 00000 Estimates 00000 Conclusion 000

Consequences of max-depth

• Consider limiting $MD \in \{2^{40}, 2^{64}, 2^{96}\}$. What happens?

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

Consequences of max-depth

- Consider limiting $MD \in \{2^{40}, 2^{64}, 2^{96}\}$. What happens?
- Attackers may be limited in the size of the instances of a hard problem that can be solved with a quantum circuit before decoherence

Intro	Q. Cryptanalysis	Enumeration
000	0000	000

Q. Tree Search

Q. Enum 00000 Estimates 00000 Conclusion 000

Consequences of max-depth

- \bullet Consider limiting $\textit{MD} \in \{2^{40}, 2^{64}, 2^{96}\}.$ What happens?
- Attackers may be limited in the size of the instances of a hard problem that can be solved with a quantum circuit before decoherence
- Multiple quantum circuits may have to be run in parallel to solve an cryptographically-sized instance, increasing the overall circuit size

Q. Tree Search

Q. Enum 00000 Estimates 00000 Conclusion 000

Consequences of max-depth

- Consider limiting $MD \in \{2^{40}, 2^{64}, 2^{96}\}$. What happens?
- Attackers may be limited in the size of the instances of a hard problem that can be solved with a quantum circuit before decoherence
- Multiple quantum circuits may have to be run in parallel to solve an cryptographically-sized instance, increasing the overall circuit size

Example: Grover search on AES

• AES-256: $MD < 2^{k/2} = 2^{128}$, what is naively required by Grover's

Enumera 000

Q. Enum 00000 Estimates 00000 Conclusion 000

Consequences of max-depth

- Consider limiting $MD \in \{2^{40}, 2^{64}, 2^{96}\}$. What happens?
- Attackers may be limited in the size of the instances of a hard problem that can be solved with a quantum circuit before decoherence
- Multiple quantum circuits may have to be run in parallel to solve an cryptographically-sized instance, increasing the overall circuit size

Example: Grover search on AES

- AES-256: $MD < 2^{k/2} = 2^{128}$, what is naively required by Grover's
- Grover search almost certainly fails if stopped early; can't read data early

Q. Cryptanalysis 000●	Enumera 000

neration

Q. Tree Search

Q. Enum 00000 Estimates 00000 Conclusion 000

Consequences of max-depth

- \bullet Consider limiting $\textit{MD} \in \{2^{40}, 2^{64}, 2^{96}\}.$ What happens?
- Attackers may be limited in the size of the instances of a hard problem that can be solved with a quantum circuit before decoherence
- Multiple quantum circuits may have to be run in parallel to solve an cryptographically-sized instance, increasing the overall circuit size

Example: Grover search on AES

- AES-256: $MD < 2^{k/2} = 2^{128}$, what is naively required by Grover's
- Grover search almost certainly fails if stopped early; can't read data early
 ⇒ We need to account for Grover's parallelisation.

tion

Q. Tree Search

Q. Enum 00000 Estimates 00000 Conclusion 000

Consequences of max-depth

- \bullet Consider limiting $\textit{MD} \in \{2^{40}, 2^{64}, 2^{96}\}.$ What happens?
- Attackers may be limited in the size of the instances of a hard problem that can be solved with a quantum circuit before decoherence
- Multiple quantum circuits may have to be run in parallel to solve an cryptographically-sized instance, increasing the overall circuit size

Example: Grover search on AES

- AES-256: $MD < 2^{k/2} = 2^{128}$, what is naively required by Grover's
- Grover search almost certainly fails if stopped early; can't read data early
 We need to account for Grover's parallelisation.
- Grover search parallelises badly [Zal99], causing the concrete quantum advantage to strongly reduce [JNRV20].

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	● O O	000	00000	00000	000

Lattice enumeration

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	●○○	000	00000	00000	000
Lattice	enumeration					

• Say we are looking for a short vector $v \neq 0$ in a lattice L with basis (b_1, \ldots, b_n)

- Say we are looking for a short vector $v \neq 0$ in a lattice L with basis (b_1, \ldots, b_n)
- Suppose we also know an upper bound R on ||v||

- Say we are looking for a short vector $v \neq 0$ in a lattice L with basis (b_1, \ldots, b_n)
- Suppose we also know an upper bound R on ||v||
- In enumeration, we explore all (or most) vectors in L of norm ≤ R, optionally stopping when we find the first one

- Say we are looking for a short vector $v \neq 0$ in a lattice L with basis (b_1, \ldots, b_n)
- Suppose we also know an upper bound R on ||v||
- In enumeration, we explore all (or most) vectors in L of norm ≤ R, optionally stopping when we find the first one
- Conceptually, enumeration consists of depth-first search on a tree *T* containing short vectors as leaves

- Say we are looking for a short vector $v \neq 0$ in a lattice L with basis (b_1, \ldots, b_n)
- Suppose we also know an upper bound R on ||v||
- In enumeration, we explore all (or most) vectors in L of norm ≤ R, optionally stopping when we find the first one
- \bullet Conceptually, enumeration consists of depth-first search on a tree ${\cal T}$ containing short vectors as leaves
- As used in lattice reduction, in dimension *n*, this requires poly(n) memory, and $\mathbb{E}[\#T] = 2^{\frac{1}{8}n \log n + o(n)}$ time on average [ABF+20]

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

• Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}

- Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}
- In our search for v, we start guessing possible values of π_n(v), by choosing points in Z₁ = {p ∈ Lat(π_n(b_n)) | ||p|| ∈ (0, R]}

- Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}
- In our search for v, we start guessing possible values of π_n(v), by choosing points in Z₁ = {p ∈ Lat(π_n(b_n)) | ||p|| ∈ (0, R]}

- Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}
- In our search for v, we start guessing possible values of π_n(v), by choosing points in Z₁ = {p ∈ Lat(π_n(b_n)) | ||p|| ∈ (0, R]}

• Given a guess g for $\pi_n(v)$, we try to "extend it" into a guess for $\pi_{n-1}(v)$ by choosing points in $Z_2 = \{p \in Lat(\pi_{n-1}(b_{n-1}), \pi_{n-1}(b_n)) \mid ||p|| \in (0, R]\}$ with $\pi_n(p) = g$

- Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}
- In our search for v, we start guessing possible values of π_n(v), by choosing points in Z₁ = {p ∈ Lat(π_n(b_n)) | ||p|| ∈ (0, R]}

• Given a guess g for $\pi_n(v)$, we try to "extend it" into a guess for $\pi_{n-1}(v)$ by choosing points in $Z_2 = \{p \in Lat(\pi_{n-1}(b_{n-1}), \pi_{n-1}(b_n)) \mid ||p|| \in (0, R]\}$ with $\pi_n(p) = g$

 $\,\circ\,$ These guesses are the nodes distant 2 from the root of the enumeration tree ${\cal T}$

- Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}
- In our search for v, we start guessing possible values of π_n(v), by choosing points in Z₁ = {p ∈ Lat(π_n(b_n)) | ||p|| ∈ (0, R]}

• Given a guess g for $\pi_n(v)$, we try to "extend it" into a guess for $\pi_{n-1}(v)$ by choosing points in $Z_2 = \{p \in Lat(\pi_{n-1}(b_{n-1}), \pi_{n-1}(b_n)) \mid ||p|| \in (0, R]\}$ with $\pi_n(p) = g$

 $\,\circ\,$ These guesses are the nodes distant 2 from the root of the enumeration tree ${\cal T}$

• This search is done depth-first, stopping whenever we fail to extend a guess from Z_i to Z_{i+1} while maintaining norm $\leq R$;

- Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}
- In our search for v, we start guessing possible values of π_n(v), by choosing points in Z₁ = {p ∈ Lat(π_n(b_n)) | ||p|| ∈ (0, R]}

• Given a guess g for $\pi_n(v)$, we try to "extend it" into a guess for $\pi_{n-1}(v)$ by choosing points in $Z_2 = \{p \in Lat(\pi_{n-1}(b_{n-1}), \pi_{n-1}(b_n)) \mid ||p|| \in (0, R]\}$ with $\pi_n(p) = g$

 $\,\circ\,$ These guesses are the nodes distant 2 from the root of the enumeration tree ${\cal T}$

• This search is done depth-first, stopping whenever we fail to extend a guess from Z_i to Z_{i+1} while maintaining norm $\leq R$; we find v when it we extend a guess from Z_{n-1} to Z_n

- Given vectors (b_1, \ldots, b_n) , let $\pi_i(b_j)$ be the part of b_j orthogonal to b_1, \ldots, b_{i-1}
- In our search for v, we start guessing possible values of π_n(v), by choosing points in Z₁ = {p ∈ Lat(π_n(b_n)) | ||p|| ∈ (0, R]}

• Given a guess g for $\pi_n(v)$, we try to "extend it" into a guess for $\pi_{n-1}(v)$ by choosing points in $Z_2 = \{p \in Lat(\pi_{n-1}(b_{n-1}), \pi_{n-1}(b_n)) \mid ||p|| \in (0, R]\}$ with $\pi_n(p) = g$

 $\circ\,$ These guesses are the nodes distant 2 from the root of the enumeration tree ${\cal T}$

• This search is done depth-first, stopping whenever we fail to extend a guess from Z_i to Z_{i+1} while maintaining norm $\leq R$; we find v when it we extend a guess from Z_{n-1} to Z_n

We can see this as searching for a "marked leaf" in a tree, where a leaf is marked if its norm is $\leq R$.

• Nodes located on different levels Z_k

 Nodes located on different levels Z_k

 "Middle" levels super-exponentially large [GNR10]: #T ≈ #Z_{n/2}

 Nodes located on different levels Z_k

Conclusion

• "Middle" levels super-exponentially large [GNR10]: $\#T \approx \#Z_{n/2}$

 The tree size can be somewhat reduced by "pruning" nodes that are unlikely to yield a marked leaf

 In 2018, Montanaro introduces two quantum tree-search algorithms, DetectMV and FindMV [Mon18]

- In 2018, Montanaro introduces two quantum tree-search algorithms, DetectMV and FindMV [Mon18]
- Given a tree T and a predicate P, DetectMV returns whether \exists leaf $\in T$ such that $P(\text{leaf}) = \text{true in } \tilde{O}(\sqrt{T \cdot n})$ evaluations of P, where $\#T \leq T$

- In 2018, Montanaro introduces two quantum tree-search algorithms, DetectMV and FindMV [Mon18]
- Given a tree T and a predicate P, DetectMV returns whether \exists leaf $\in T$ such that $P(\text{leaf}) = \text{true in } \tilde{O}(\sqrt{T \cdot n})$ evaluations of P, where $\#T \leq T$
- By performing decision on every level, $DetectMV \mapsto FindMV$, which returns such a leaf

- In 2018, Montanaro introduces two quantum tree-search algorithms, DetectMV and FindMV [Mon18]
- Given a tree T and a predicate P, DetectMV returns whether \exists leaf $\in T$ such that $P(\text{leaf}) = \text{true in } \tilde{O}(\sqrt{T \cdot n})$ evaluations of P, where $\#T \leq T$
- By performing decision on every level, $DetectMV \mapsto FindMV$, which returns such a leaf
- For trees with one (randomly distributed) marked leaf and $\#T \approx \mathcal{T}$:

Classical average-case runtime $O(\#T) \mapsto$ quantum average case $\tilde{O}(\sqrt{\#T \cdot n})$

$$\underbrace{\text{DF}(\mathcal{T}) \text{ times } QD(\mathcal{T}) \text{ times } WQ(\mathcal{T}, \mathcal{W}) \text{ times }}_{\text{FINDMV}} \xrightarrow{- - \bullet} \underbrace{\text{DETECTMV}}_{\text{OPE}} \xrightarrow{- - \bullet} \underbrace{\text{W} := R_A R_B}_{\text{Quantum circuit}}$$

$$\begin{array}{c|c} \mathbf{DF}(\mathcal{T}) \text{ times } & \mathbf{QD}(\mathcal{T}) \text{ times } & \mathbf{WQ}(\mathcal{T}, \mathcal{W}) \text{ times } \\ \hline \\ \hline \\ \mathbf{FINDMV} \\ - - \bullet & \mathbf{DETECTMV} \\ - - \bullet & \mathbf{QPE} \\ \hline \\ & \mathbf{QUE} \\ \hline \\ & \mathbf$$

 DetectMV consists of repeating multiple Quantum Phase Estimations (QPE) of an operator W that checks predicate P;

$$\begin{array}{c|c} \mathbf{DF}(\mathcal{T}) \text{ times } & \mathbf{QD}(\mathcal{T}) \text{ times } & \mathbf{WQ}(\mathcal{T}, \mathcal{W}) \text{ times } \\ \hline \\ \hline \\ \mathbf{FINDMV} \\ \hline \\ - - \bullet & \mathbf{DETECTMV} \\ \hline \\ - - \bullet & \mathbf{W} := R_A R_B \\ \hline \\ & \mathbf{Quantum \ circuit} \end{array}$$

• DetectMV consists of repeating multiple Quantum Phase Estimations (QPE) of an operator W that checks predicate P; evaluating QPE(W) is the quantum part

$$\begin{array}{c|c} \mathbf{DF}(\mathcal{T}) \text{ times } & \mathbf{QD}(\mathcal{T}) \text{ times } & \mathbf{WQ}(\mathcal{T}, \mathcal{W}) \text{ times } \\ \hline \\ \hline \\ \hline \\ \mathbf{FINDMV} \\ - - \bullet & \mathbf{DETECTMV} \\ - - \bullet & \mathbf{W} := R_A R_B \\ \hline \\ \\ \mathbf{Quantum \ circuit} \end{array}$$

- DetectMV consists of repeating multiple Quantum Phase Estimations (QPE) of an operator W that checks predicate P; evaluating QPE(W) is the quantum part
- Under conservative estimations, we serially evaluate $\sqrt{\#T \cdot n}$ times W per QPE

$$\begin{array}{c|c} \mathbf{DF}(\mathcal{T}) \text{ times } & \mathbf{QD}(\mathcal{T}) \text{ times } & \mathbf{WQ}(\mathcal{T}, \mathcal{W}) \text{ times } \\ \hline \\ \hline \\ \mathbf{FINDMV} \\ - & - & \bullet \\ \hline \\ \mathbf{DETECTMV} \\ - & - & \bullet \\ \hline \\ \mathbf{QPE} \\ - & - & \bullet \\ \hline \\ \mathbf{W} := R_A R_B \\ \hline \\ \mathbf{Quantum \ circuit} \end{array}$$

- DetectMV consists of repeating multiple Quantum Phase Estimations (QPE) of an operator W that checks predicate P; evaluating QPE(W) is the quantum part
- Under conservative estimations, we serially evaluate $\sqrt{\#T \cdot n}$ times W per QPE
- Our objective is to lower-bound the gate-cost of FindMV(T), while keeping the serial quantum depth within max-depht MD

ntro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates
000	0000	000	000	00000	00000

Conclusion

To check the hypothetical depth of such a QPE we:

• Chose a target scheme to attack (Kyber)

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	00•	00000	00000	000

- Chose a target scheme to attack (Kyber)
- Lower-bound the size of W by assuming $\mathsf{Depth}(W) = \mathsf{Gates}(W) = 1$

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- Chose a target scheme to attack (Kyber)
- Lower-bound the size of W by assuming $\mathsf{Depth}(W) = \mathsf{Gates}(W) = 1$
- $\bullet\,$ Using the LWE estimator we find the required block size β to break Kyber using the primal attack

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- Chose a target scheme to attack (Kyber)
- Lower-bound the size of W by assuming $\mathsf{Depth}(W) = \mathsf{Gates}(W) = 1$
- $\bullet\,$ Using the LWE estimator we find the required block size β to break Kyber using the primal attack
 - β is the depth *n* of tree

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- Chose a target scheme to attack (Kyber)
- ${\scriptstyle \bullet }$ Lower-bound the size of ${\it W}$ by assuming ${\rm Depth}({\it W})={\rm Gates}({\it W})=1$
- $\bullet\,$ Using the LWE estimator we find the required block size β to break Kyber using the primal attack
 - β is the depth *n* of tree
 - From *n* we obtain #T by using lower bounds for the cost of enumeration with cylinder pruning [ANSS18]

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- Chose a target scheme to attack (Kyber)
- Lower-bound the size of W by assuming $\mathsf{Depth}(W) = \mathsf{Gates}(W) = 1$
- $\bullet\,$ Using the LWE estimator we find the required block size β to break Kyber using the primal attack
 - β is the depth *n* of tree
 - From *n* we obtain #T by using lower bounds for the cost of enumeration with cylinder pruning [ANSS18]
- $\, \bullet \,$ Finally, we check if the resulting circuit depth of QPE is $\leq \textit{MD}$

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	●0000	00000	000

$$\underset{\substack{\text{random}\\\text{tree }T}}{\mathbb{E}} [\text{Depth}(\text{QPE}(W))] \approx \mathbb{E}[\sqrt{\#T \cdot \beta}] \approx \sqrt{\mathbb{E}[\#T] \cdot \beta} \approx \begin{cases} 2^{90.3} & \text{for Kyber-512,} \\ 2^{166.2} & \text{for Kyber-768,} \\ 2^{263.7} & \text{for Kyber-1024,} \end{cases}$$

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	●0000	00000	000

$$\mathbb{E}_{\substack{\text{random}\\\text{tree }T}} [\text{Depth}(\text{QPE}(W))] \approx \mathbb{E}[\sqrt{\#T \cdot \beta}] \approx \sqrt{\mathbb{E}[\#T] \cdot \beta} \approx \begin{cases} 2^{90.3} & \text{for Kyber-512,} \\ 2^{166.2} & \text{for Kyber-768,} \\ 2^{263.7} & \text{for Kyber-1024,} \end{cases}$$

• Wait, don't drag me out of the room

1

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates
000	0000	000	000	00000	00000

 $\mathbb{E}_{\substack{\text{random}\\\text{tree }T}}[\text{Depth}(\text{QPE}(W))] \approx \mathbb{E}[\sqrt{\#T \cdot \beta}] \approx \sqrt{\mathbb{E}[\#T] \cdot \beta} \approx \begin{cases} 2^{90.3} & \text{for Kyber-512,} \\ 2^{166.2} & \text{for Kyber-768,} \\ 2^{263.7} & \text{for Kyber-1024,} \end{cases}$

• Wait, don't drag me out of the room

Conclusion

- I do know Jensen's inequality! $\mathbb{E}[\sqrt{\#\,T}] \leq \sqrt{\mathbb{E}[\#\,T]}$
- Just wait a handful of slides

Intro 000 Q. Cryptanalysis

Enumeration 000 Q. Tree Search

Q. Enum o●ooo Estimates 00000 Conclusion 000

- ${\scriptstyle \bullet }$ We plausibly don't fit within 2^{96} depth
- We need smaller trees to enumerate

Classic trick from parallel enumeration

Quantum

- We plausibly don't fit within 2^{96} depth
- We need smaller trees to enumerate

Classic trick from parallel enumeration

- Precompute nodes up to level k > 1, run FindMV on the subtrees.
- We can estimate the size of subtrees with similar techniques as for the full tree.

Intro 000	Q. Cryptanalysis 0000	Enumeration 000	Q. Tree Search 000	Q. Enum oo●oo	Estimates 00000	Conclusion 000
Would t	his work? Up to	what level k do	we			
precomp	oute?					

Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Would this work? Up to what level k do we precompute?

 k ≈ 1: in this case most of the tree fits within the quantum enumeration subroutine → a quadratic speedup without pre-computation, but maybe not our case

Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion 000 Would this work? Up to what level k do we precompute?

 k ≈ 1: in this case most of the tree fits within the quantum enumeration subroutine → a quadratic speedup without pre-computation, but maybe not our case

Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion 000 Would this work? Up to what level k do we precompute?

 k ≈ 1: in this case most of the tree fits within the quantum enumeration subroutine → a quadratic speedup without pre-computation, but maybe not our case

•
$$k \approx n/2$$
: we run $\approx H_{n/2} \coloneqq |Z_{n/2}|$
quantum enumeration calls

• $k \approx n$: we run some quantum enumeration, we precomputed more than $H_{n/2}$ classically, no advantage over classical enumeration

Intro Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion 000 Would this work? Up to what level k do we precompute?

- k ≈ 1: in this case most of the tree fits within the quantum enumeration subroutine → a quadratic speedup without pre-computation, but maybe not our case
- $k \approx n/2$: we run $\approx H_{n/2} \coloneqq |Z_{n/2}|$ quantum enumeration calls \implies total gate-count $\approx H_{n/2} \approx \text{cost}$ of classical enumeration
- $k \approx n$: we run some quantum enumeration, we precomputed more than $H_{n/2}$ classically, no advantage over classical enumeration

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates
000	0000	000	000	00000	00000

Conclusion

Our best chance is $k \lesssim n/2$.

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	000●0	00000	000

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

• Try bundling! Assume 2^y qRAM available

ntro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
00	0000	000	000	00000	00000	000

- Try bundling! Assume 2^y qRAM available
- Precompute sets of 2^{y} elements in Z_k , collect them under a 'virtual' node v, run FindMV over the tree T(v) with root v

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- Try bundling! Assume 2^y qRAM available
- Precompute sets of 2^{y} elements in Z_k , collect them under a 'virtual' node v, run FindMV over the tree T(v) with root v

Disclaimer

qRAM (a.k.a. QRACM) may be quite costly to access [JR23]. Yet, many quantum-classical speedups assume it.

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

One last step: expected square roots

• We are trying to estimate or lower-bound $\mathbb{E}[\sqrt{\#T}]$, but the distribution of #T is unknown (Aono *et al.* [ANS18] already mention this issue)

One last step: expected square roots

- We are trying to estimate or lower-bound $\mathbb{E}[\sqrt{\#T}]$, but the distribution of #T is unknown (Aono *et al.* [ANS18] already mention this issue)
- Jensen's inequality $(\mathbb{E}[\sqrt{\#T}] \le \sqrt{\mathbb{E}[\#T]})$ only gives us upper bounds

One last step: expected square roots

- We are trying to estimate or lower-bound $\mathbb{E}[\sqrt{\#T}]$, but the distribution of #T is unknown (Aono *et al.* [ANS18] already mention this issue)
- Jensen's inequality $(\mathbb{E}[\sqrt{\#T}] \leq \sqrt{\mathbb{E}[\#T]})$ only gives us upper bounds

Definition: Multiplicative Jensen's gap

Let X be a random variable. We say X has multiplicative Jensen's gap 2^z if

$$\sqrt{\mathbb{E}[X]} = 2^z \, \mathbb{E}[\sqrt{X}].$$

One last step: expected square roots

- We are trying to estimate or lower-bound $\mathbb{E}[\sqrt{\#T}]$, but the distribution of #T is unknown (Aono *et al.* [ANS18] already mention this issue)
- Jensen's inequality $(\mathbb{E}[\sqrt{\#T}] \leq \sqrt{\mathbb{E}[\#T]})$ only gives us upper bounds

Definition: Multiplicative Jensen's gap

Let X be a random variable. We say X has multiplicative Jensen's gap 2^z if

$$\sqrt{\mathbb{E}[X]} = 2^z \, \mathbb{E}[\sqrt{X}].$$

 $\, \bullet \,$ Ideally, we want an upper bound to z; up to $\beta = 70$ we measure z ≈ 1

One last step: expected square roots

- We are trying to estimate or lower-bound $\mathbb{E}[\sqrt{\#T}]$, but the distribution of #T is unknown (Aono *et al.* [ANS18] already mention this issue)
- $\, \bullet \,$ Jensen's inequality $(\mathbb{E}[\sqrt{\#\,T}] \leq \sqrt{\mathbb{E}[\#\,T]})$ only gives us upper bounds

Definition: Multiplicative Jensen's gap

Let X be a random variable. We say X has multiplicative Jensen's gap 2^z if

$$\sqrt{\mathbb{E}[X]} = 2^z \, \mathbb{E}[\sqrt{X}].$$

- $\bullet\,$ Ideally, we want an upper bound to z; up to $\beta=$ 70 we measure $z\approx 1$
- Without such bounds, we can run attack cost estimates as a function of z, and see at what point the hypothetical attack becomes viable

Q.	Cryptanalysis
00	00

Intro

Enumeration 000 Q. Tree Search

Q. Enum 00000 Estimates ●0000 Conclusion 000

Summarising, we obtain formulae for

• The depth of the individual QPE circuits we need to run

Intro

Estimates ●0000 Conclusion 000

Summarising, we obtain formulae for

- The depth of the individual QPE circuits we need to run
- The total number of gates we evaluate

Q. Cryptanalysis

Intro

Enumeration 000 Q. Tree Search

Q. Enum 00000 Estimates •0000 Conclusion 000

Summarising, we obtain formulae for

- The depth of the individual QPE circuits we need to run
- The total number of gates we evaluate

Quantum depth

$$\mathbb{E}\left[\mathsf{Depth}(\mathsf{QPE}(W))\right] \geq \frac{1}{2^z} \sqrt{\mathbb{E}\left[\#\mathcal{T}(v) \cdot (n-k+1)\right]} \cdot \mathsf{Depth}(W), \text{ for } g \in Z_k.$$

Q. Cryptanalysis

Intro

Enumeration 000 Q. Tree Search

Q. Enum 00000 Estimates •0000 Conclusion 000

Summarising, we obtain formulae for

- The depth of the individual QPE circuits we need to run
- The total number of gates we evaluate

Quantum depth

$$\mathbb{E}\left[\mathsf{Depth}(\mathsf{QPE}(\mathcal{W}))\right] \geq \frac{1}{2^z} \sqrt{\mathbb{E}\left[\#\mathcal{T}(\mathbf{v})\cdot(\mathbf{n}-\mathbf{k}+1)\right]} \cdot \mathsf{Depth}(\mathcal{W}), \text{ for } g \in Z_k.$$

Quantum gate-cost

$$\mathbb{E}_{\substack{\text{random}\\\text{tree }T}} [\text{Quantum Gates}] \approx \frac{H_k}{2^{y}} \cdot \mathbb{E} \left[\text{Gates}(\text{FindMV}(T(g))) \right]$$
$$\geq \frac{H_k}{2^{y}} \cdot \mathbb{E} \left[\sqrt{\#T(v) \cdot (n-k+1)} \right] \cdot \text{Gates}(W)$$
$$= \frac{H_k}{2^{y}} \cdot \frac{1}{2^z} \sqrt{\mathbb{E} \left[\#T(v) \cdot (n-k+1) \right]} \cdot \text{Gates}(W)$$

Intro	Q. Cryptanalysis
000	0000

Enumeration 000 Q. Tree Search

Q. Enum 00000 Estimates 0●000 Conclusion 000

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

We assume either Depth(W) = Gates(W) = 1 (in the "query-model") or an estimated lower bound based on best-known quantum arithmetic circuits (in the "circuit-model", recent work may help [BvHJ⁺23])

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	0●000	000

- We assume either Depth(W) = Gates(W) = 1 (in the "query-model") or an estimated lower bound based on best-known quantum arithmetic circuits (in the "circuit-model", recent work may help [BvHJ⁺23])
- ${\, \bullet \, }$ We use the LWE-estimator to find the enumeration dimension β

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000		00000	0●000	000

- We assume either Depth(W) = Gates(W) = 1 (in the "query-model") or an estimated lower bound based on best-known quantum arithmetic circuits (in the "circuit-model", recent work may help [BvHJ⁺23])
- ${\scriptstyle \bullet}$ We use the LWE-estimator to find the enumeration dimension β
- We estimate sub-tree sizes using cylinder pruning lower-bounds [ANSS18]

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	0●000	000

- We assume either Depth(W) = Gates(W) = 1 (in the "query-model") or an estimated lower bound based on best-known quantum arithmetic circuits (in the "circuit-model", recent work may help [BvHJ⁺23])
- We use the LWE-estimator to find the enumeration dimension β
- We estimate sub-tree sizes using cylinder pruning lower-bounds [ANSS18]
- We estimate costs for every $k \le n, \ y \le 80, \ z \le 64$

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	0●000	000

- We assume either Depth(W) = Gates(W) = 1 (in the "query-model") or an estimated lower bound based on best-known quantum arithmetic circuits (in the "circuit-model", recent work may help [BvHJ⁺23])
- ${\scriptstyle \bullet}$ We use the LWE-estimator to find the enumeration dimension β
- We estimate sub-tree sizes using cylinder pruning lower-bounds [ANSS18]
- We estimate costs for every $k \le n, \ y \le 80, \ z \le 64$
- We report *z*, *k* minimising *classical* + *quantum gate-cost*

Intro 000		Q. Cryptanalysis 0000	Enumeration 000	Q. Tree Searc 000	h Q. Enui 00000	n Estimates 00000	Conclusion 000
mor	e likely	to be feasible				less like	ely to be feasible
		$\log \mathbb{E}[\text{GCost}]$	Γ (with \mathcal{W} as in §	4.1) below	$\log \mathbb{E}[\mathrm{GCost}]$] (with \mathcal{W} as in §	4.2) below
MD	Kyber	Target security	Grover on $AES_{\{128,192,256\}}$	${f Quasi-Sqrt}\ {}^1\!/{}_b\sqrt{\#{\cal T}\cdot h}$	Target security	Grover on $AES_{\{128,192,256\}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
2^{40}	-512 -768 -1024						
2^{64}	-512 -768 -1024						
2^{96}	-512 -768 -1024						
∞	-512 -768 -1024						

ntro 100		Q. Cryptanalysis 0000	Enumeration 000	Q. Tree Search 000	Q. Enun 00000	n Estimates	Conclusion 000
more	e likely	to be feasible				less like	ely to be feasible
		$\log \mathbb{E}[\mathrm{GCost}]$	$[\Gamma]$ (with \mathcal{W} as in §	4.1) below	$\log \mathbb{E}[GCOST]$] (with \mathcal{W} as in §	4.2) below
MD	Kyber	Target security	Grover on $AES_{\{128,192,256\}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	Target security	Grover on $AES_{128,192,256}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
2^{40}	-512 -768 -1024						
2^{64}	-512 -768 -1024						
2^{96}	-512 -768 -1024						
∞	-512 -768 -1024	$z \ge 0, \ k = 0 z \ge 0, \ k = 0 z \ge 9, \ k = 0$	$ z \ge 9, \ k = 0 z \ge 52, \ k = 0 z > 64 $	$ \begin{array}{c} z \geq 1, \; k = 0 \\ z \geq 1, \; k = 0 \\ z \geq 1, \; k = 0 \end{array} $	$z \ge 0, \ k = 0 z \ge 1, \ k = 0 z \ge 35, \ k = 0$	$z \ge 33, k = 0$ z > 64 z > 64	$z \ge 26, \ k = 0$ $z \ge 27, \ k = 0$ $z \ge 28, \ k = 0$

ntro 100		Q. Cryptanalysis 0000	Enumeration 000	Q. Tree Searc	h Q. Enun 00000	n Estimate 00000	s Conclusion
more	e likely	to be feasible				less lik	ely to be feasible
		$\log \mathbb{E}[\mathrm{GCost}]$	[] (with \mathcal{W} as in §	4.1) below	$\log \mathbb{E}[\text{GCost}]$] (with \mathcal{W} as in §	4.2) below
MD	Kyber	Target security	Grover on $AES_{\{128,192,256\}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	Target security	Grover on $AES_{128,192,256}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
2^{40}	-512 -768 -1024						
2^{64}	-512 -768 -1024						
2^{96}	-512 -768 -1024	$z \ge 0, \ k \le 58$ $z \ge 23, \ k \le 106$ z > 64	$\begin{array}{c} z \geq 8, k \leq 53 \\ z \geq 56, k \leq 62 \\ z > 64 \end{array}$	$z \ge 1, \ k \le 58$ $z \ge 36, \ k \le 77$ z > 64	$ \begin{array}{c} z \geq 0, \ k \leq 63 \\ z \geq 40, \ k \leq 77 \\ z > 64 \end{array} $	$z \ge 33, \ k \le 54$ z > 64 z > 64	$z \ge 25, \ k \le 58$ $z \ge 52, \ k \le 77$ z > 64
∞	-512 -768 -1024	$z \ge 0, \ k = 0$ $z \ge 0, \ k = 0$ $z \ge 9, \ k = 0$	$z \ge 9, \ k = 0$ $z \ge 52, \ k = 0$ z > 64	$z \ge 1, \ k = 0$ $z \ge 1, \ k = 0$ $z \ge 1, \ k = 0$	$z \ge 0, \ k = 0 z \ge 1, \ k = 0 z \ge 35, \ k = 0$	$z \ge 33, k = 0$ z > 64 z > 64	$z \ge 26, \ k = 0$ $z \ge 27, \ k = 0$ $z \ge 28, \ k = 0$

ntro 000		Q. Cryptanalysis 0000	Enumeration 000	Q. Tree Searc	h Q. Enur 00000	n Estimate 00000	S Conclusion
more	e likely	to be feasible				less lik	kely to be feasible
		$\log \mathbb{E}[\mathrm{GCost}]$	$[T]$ (with \mathcal{W} as in §	(4.1) below	$\log \mathbb{E}[\text{GCost}]$] (with \mathcal{W} as in §	4.2) below
MD	Kyber	Target security	Grover on $AES_{128,192,256}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	Target security	Grover on $AES_{128,192,256}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
2^{40}	-512 -768 -1024						
2^{64}	-512 -768 -1024	$z \ge 0, \ k \le 83$ $z \ge 39, \ k \le 114$ z > 64	$\begin{array}{c} z \ge 13, k \le 64 \\ z \ge 57, k \le 77 \\ z > 64 \end{array}$	$z \ge 14, \ k \le 59$ $z \ge 52, \ k \le 77$ z > 64		$z \ge 29, \ k \le 63$ z > 64 z > 64	$z \ge 30, \ k \le 63$ z > 64 z > 64
2^{96}	-512 -768 -1024	$z \ge 0, \ k \le 58$ $z \ge 23, \ k \le 106$ z > 64	$\begin{array}{c} z \geq 8, k \leq 53 \\ z \geq 56, k \leq 62 \\ z > 64 \end{array}$	$z \ge 1, k \le 58$ $z \ge 36, k \le 77$ z > 64	$ \begin{array}{c} z \ge 0, \ k \le 63 \\ z \ge 40, \ k \le 77 \\ z > 64 \end{array} $	$z \ge 33, \ k \le 54$ z > 64 z > 64	$z \ge 25, \ k \le 58$ $z \ge 52, \ k \le 77$ z > 64
∞	-512 -768 -1024	$z \ge 0, \ k = 0$ $z \ge 0, \ k = 0$ $z \ge 9, \ k = 0$	$z \ge 9, \ k = 0$ $z \ge 52, \ k = 0$ z > 64	$z \ge 1, \ k = 0$ $z \ge 1, \ k = 0$ $z \ge 1, \ k = 0$	$z \ge 0, \ k = 0 z \ge 1, \ k = 0 z \ge 35, \ k = 0$	$z \ge 33, k = 0$ z > 64 z > 64	$z \ge 26, \ k = 0$ $z \ge 27, \ k = 0$ $z \ge 28, \ k = 0$

Intro 000		Q. Cryptanalysis 0000	Enumeration 000	Q. Tree Searc 000	ch Q. Enun 00000	n Estimate	S Conclusion
more	e likely	to be feasible				less lil	kely to be feasible
		$\log \mathbb{E}[\text{GCost}]$] (with \mathcal{W} as in §	4.1) below	$\log \mathbb{E}[\text{GCost}]$] (with $\mathcal W$ as in §	4.2) below
MD	Kyber	Target security	Grover on $AES_{\{128,192,256\}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	Target security	Grover on $AES_{\{128,192,256\}}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
2^{40}	-512 -768 -1024	$z \ge 7, \ k \le 92$ $z \ge 51, \ k \le 114$ z > 64	$z \ge 13, k \le 83$ $z \ge 57, k \le 106$ z > 64	$z \ge 26, \ k \le 59$ $z \ge 64, \ k \le 77$ z > 64	$ \begin{array}{c} z \ge 23, \ k \le 96 \\ z > 64 \\ z > 64 \end{array} $	$z \ge 29, \ k \le 79$ z > 64 z > 64	$z \ge 42, \ k \le 63$ z > 64 z > 64
2^{64}	-512 -768 -1024	$z \ge 0, \ k \le 83$ $z \ge 39, \ k \le 114$ z > 64	$z \ge 13, k \le 64$ $z \ge 57, k \le 77$ z > 64	$z \ge 14, \ k \le 59$ $z \ge 52, \ k \le 77$ z > 64	$ \begin{array}{c} z \geq 11, \ k \leq 96 \\ z \geq 55, \ k \leq 111 \\ z > 64 \end{array} $	$z \ge 29, \ k \le 63$ z > 64 z > 64	$z \ge 30, \ k \le 63$ z > 64 z > 64
2^{96}	-512 -768 -1024	$z \ge 0, \ k \le 58$ $z \ge 23, \ k \le 106$ z > 64	$z \ge 8, \ k \le 53$ $z \ge 56, \ k \le 62$ z > 64	$z \ge 1, \ k \le 58$ $z \ge 36, \ k \le 77$ z > 64	$ \begin{array}{c c} z \ge 0, \ k \le 63 \\ z \ge 40, \ k \le 77 \\ z > 64 \end{array} $	$z \ge 33, \ k \le 54$ z > 64 z > 64	$z \ge 25, \ k \le 58$ $z \ge 52, \ k \le 77$ z > 64
∞	-512 -768 -1024	$z \ge 0, \ k = 0$ $z \ge 0, \ k = 0$ $z \ge 9, \ k = 0$	$z \ge 9, \ k = 0$ $z \ge 52, \ k = 0$ z > 64	$z \ge 1, \ k = 0$ $z \ge 1, \ k = 0$ $z \ge 1, \ k = 0$	$z \ge 0, \ k = 0 z \ge 1, \ k = 0 z \ge 35, \ k = 0$	$z \ge 33, k = 0$ z > 64 z > 64	$z \ge 26, \ k = 0$ $z \ge 27, \ k = 0$ $z \ge 28, \ k = 0$

Q. Cryptanalysis
0000

Intro

Enumeration 000 Q. Tree Search

Q. Enum 00000 Estimates 000●0 Conclusion 000

• Kyber-768 and -1024 seem out of reach

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

- Kyber-768 and -1024 seem out of reach
- Kyber-512 within reach in the "query-model", less clear for "circuit-model"

ntro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	000●0	000

- Kyber-768 and -1024 seem out of reach
- Kyber-512 within reach in the "query-model", less clear for "circuit-model"
 However AES-128 also within reach of Grover key-search in some settings...
 - And we are being quite strict in various parts of the computation

tro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
DO		000	000	00000	00000	000

- Kyber-768 and -1024 seem out of reach
- Kyber-512 within reach in the "query-model", less clear for "circuit-model"
 However AES-128 also within reach of Grover key-search in some settings...
 - And we are being quite strict in various parts of the computation
- Hard to claim this attack obviously works

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates
000	0000	000	000	00000	00000

Conclusion

- Kyber-768 and -1024 seem out of reach
- Kyber-512 within reach in the "query-model", less clear for "circuit-model"
 However AES-128 also within reach of Grover key-search in some settings...
 - And we are being quite strict in various parts of the computation
- Hard to claim this attack obviously works

Disclaimer

Yet, we can't fully exclude it without a clear understanding of the Jensen gap.
0	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates
0	0000	000	000	00000	00000

- Kyber-768 and -1024 seem out of reach
- Kyber-512 within reach in the "query-model", less clear for "circuit-model"
 However AES-128 also within reach of Grover key-search in some settings...
 - And we are being quite strict in various parts of the computation
- Hard to claim this attack obviously works

Disclaimer

Int

Yet, we can't fully exclude it without a clear understanding of the Jensen gap.

Can we say anything about it?

Intro 000 Q. Cryptanalysis

Enumeration 000 Q. Tree Search

Q. Enum 00000 Estimates 0000● Conclusion 000

Reasons to hope Q. Enum doesn't work:

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

Reasons to hope Q. Enum doesn't work:

In our numbers we observe that the cost reduces smoothly as a funciton of z
 approximate estimates may already help

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	0000●	000

Reasons to hope Q. Enum doesn't work:

- In our numbers we observe that the cost reduces smoothly as a funciton of z \implies approximate estimates may already help
- Experimental evidence up to $\beta = 70$ says $z \approx 1$

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	0000●	000

Reasons to hope Q. Enum doesn't work:

- In our numbers we observe that the cost reduces smoothly as a funciton of $z \implies$ approximate estimates may already help
- Experimental evidence up to $\beta = 70$ says $z \approx 1$
- We can prove lower bounds on $\mathbb{E}[\sqrt{\#T}]$ based on the additive and multiplicative Jensen's gaps, implying:

$$\mathbb{E}[\sqrt{\#T}] \geq \max\left\{\sqrt{\mathbb{E}[\#T]} - \sqrt[4]{\mathbb{V}[\#T]}, \quad 2^{-\frac{1}{2\ln 2}\sqrt[4]{\mathbb{V}[\#T]}} \cdot \sqrt{\mathbb{E}[\#T]}\right\}.$$

But both depend on $\mathbb{V}[\#T]$.

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	•00
Open p	problems					

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	●00
Open p	problems					

$$\#T = \sum_{k=1}^{n} |Z_k| = \sum_{k=1}^{n} \left| \mathsf{Ball}_k(\mathbf{0}, R) \cap Lat(\pi_{n-k+1}(b_{n-k+1}), \dots, \pi_{n-k+1}(b_n)) \right|$$

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	•00
Open	problems					

$$\#T = \sum_{k=1}^{n} |Z_k| = \sum_{k=1}^{n} |\mathsf{Ball}_k(\mathbf{0}, R) \cap \mathsf{Lat}\Big(\pi_{n-k+1}(b_{n-k+1}), \dots, \pi_{n-k+1}(b_n)\Big)\Big|$$

$$\mathbb{V}_{\substack{\text{random}\\\text{tree }T}}[|\mathsf{Ball}_k(\mathbf{0}, R_k) \cap \pi_{n-k+1}(\Lambda)|]? \qquad \mathbb{V}_{\substack{\text{random}\\\text{tree }T}}[\#T]?$$

• There's some results for random real lattices [AEN], but unclear if they apply to lattices during BKZ reduction

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	•00
Open	problems					

$$\#T = \sum_{k=1}^{n} |Z_k| = \sum_{k=1}^{n} |\mathsf{Ball}_k(\mathbf{0}, R) \cap \mathsf{Lat}\Big(\pi_{n-k+1}(b_{n-k+1}), \dots, \pi_{n-k+1}(b_n)\Big)\Big|$$

$$\mathbb{V}_{\substack{\text{random}\\\text{tree }T}}[|\mathsf{Ball}_k(\mathbf{0}, R_k) \cap \pi_{n-k+1}(\Lambda)|]? \qquad \mathbb{V}_{\substack{\text{random}\\\text{tree }T}}[\#T]?$$

• There's some results for random real lattices [AEN], but unclear if they apply to lattices during BKZ reduction

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	○●○
Open p	oroblems					

• We've only covered cylinder pruning. What about discrete pruning? Or ad-hoc pruning for quantum enumeration?

Intro 000	Q. Cryptanalysis	Enumeration 000	Q. Tree Search 000	Q. Enum 00000	Estimates 00000	Conclusion
Open	problems					

- We've only covered cylinder pruning. What about discrete pruning? Or ad-hoc pruning for quantum enumeration?
- Currently searching for attack costs is an optimisation problem. Can we find a closed formula? This would allow running it as part of "estimator" scripts.

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	OOO
Open	problems					

- We've only covered cylinder pruning. What about discrete pruning? Or ad-hoc pruning for quantum enumeration?
- Currently searching for attack costs is an optimisation problem. Can we find a closed formula? This would allow running it as part of "estimator" scripts.
- There quite a few places where our analysis may not be tight, meaning actual costs are likely higher.

Intro 000	Q. Cryptanalysis	Enumeration 000	Q. Tree Search 000	Q. Enum 00000	Estimates 00000	Conclusion 00●
Co	onclusions					
_						

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	

• Asymptotically quadratic quantum speedups on enumeration may not hold under max-depth constraints

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	00●

- Asymptotically quadratic quantum speedups on enumeration may not hold under max-depth constraints
- Technically hard to fully exclude the viability of quantum enumeration

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000		00000	00000	00●

- Asymptotically quadratic quantum speedups on enumeration may not hold under max-depth constraints
- Technically hard to fully exclude the viability of quantum enumeration
- Speedups to the primal lattice attack on Kyber seem unlikely

Intro 000	Q. Cryptanalysis	Enumeration 000	Q. Tree Search	Q. Enum 00000	Estimates 00000	Conclusion 00●

- Asymptotically quadratic quantum speedups on enumeration may not hold under max-depth constraints
- Technically hard to fully exclude the viability of quantum enumeration
- Speedups to the primal lattice attack on Kyber seem unlikely

Thank you

Slides @ https://fundamental.domains

Q. Cryptanalysis Enumeration Q. Tree Search Q. Enum Estimates Conclusion 000

Intro

Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner, Damien Stehlé, and Weiqiang Wen.
Faster enumeration-based lattice reduction: Root hermite factor $k^{1/(2k)}$ time $k^{k/8+o(k)}$. In Daniele Micciancio and Thomas Ristenpart, editors, <i>CRYPTO 2020, Part II</i> , volume 12171 of <i>LNCS</i> , pages 186–212. Springer, Heidelberg, August 2020.
Yoshinori Aono, Thomas Espitau, and Phong Q. Nguyen. Random lattices: Theory and practice. Preprint, available at https://espitau.github.io/bin/random_lattice.pdf.
Martin R. Albrecht, Vlad Gheorghiu, Eamonn W. Postlethwaite, and John M. Schanck. Estimating quantum speedups for lattice sieves. In Shiho Moriai and Huaxiong Wang, editors, <i>ASIACRYPT 2020, Part II</i> , volume 12492 of <i>LNCS</i> , pages 583–613. Springer, Heidelberg, December 2020.
Yoshinori Aono, Phong Q. Nguyen, and Yixin Shen. Quantum lattice enumeration and tweaking discrete pruning. In Thomas Peyrin and Steven Galbraith, editors, <i>ASIACRYPT 2018, Part I</i> , volume 11272 of <i>LNCS</i> , pages 405–434. Springer, Heidelberg, December 2018.
Yoshinori Aono, Phong Q. Nguyen, Takenobu Seito, and Junji Shikata. Lower bounds on lattice enumeration with extreme pruning. In Hovav Shacham and Alexandra Boldyreva, editors, <i>CRYPTO 2018, Part II</i> , volume 10992 of <i>LNCS</i> , pages 608–637. Springer, Heidelberg, August 2018.
Xavier Bonnetain, André Chailloux, André Schrottenloher, and Yixin Shen.

Xavier Bonnetain, André Chailloux, André Schrottenloher, and Yixin Shen. Finding many collisions via reusable quantum walks - application to lattice sieving.

Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
0000	000	000	00000	00000	000

In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology - EUROCRYPT 2023 - 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings, Part V, volume 14008 of Lecture Notes in Computer Science, pages 221–251. Springer, 2023.

Intro

Shi Bai, Maya-Iggy van Hoof, Floyd B. Johnson, Tanja Lange, and Tran Ngo. Concrete analysis of quantum lattice enumeration.

In Advances in Cryptology - ASIACRYPT 2023, Lecture Notes in Computer Science. Springer-Verlag, 2023.

Nicolas Gama, Phong Q. Nguyen, and Oded Regev.

Lattice enumeration using extreme pruning.

In Henri Gilbert, editor, *EUROCRYPT 2010*, volume 6110 of *LNCS*, pages 257–278. Springer, Heidelberg, May / June 2010.

Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing grover oracles for quantum key search on AES and LowMC. In Anne Canteaut and Yuval Ishai, editors, *EUROCRYPT 2020, Part II*, volume 12106 of *LNCS*, pages 280–310. Springer, Heidelberg, May 2020.

Samuel Jaques and Arthur G. Rattew. Qram: A survey and critique, 2023.

Samuel Jaques and John M. Schanck.

Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE.

In Alexandra Boldyreva and Daniele Micciancio, editors, *CRYPTO 2019, Part I*, volume 11692 of *LNCS*, pages 32–61. Springer, Heidelberg, August 2019.

Q. Cryptanalysis	Enumeration	Q. Tree Search 000	Q. Enum 00000	Estimates 00000	Conclusion
------------------	-------------	-----------------------	------------------	--------------------	------------

Intro

Elena Kirshanova, Erik Mårtensson, Eamonn W. Postlethwaite, and Subhayan Roy Moulik. Quantum algorithms for the approximate k-list problem and their application to lattice sieving. In Steven D. Galbraith and Shiho Moriai, editors, *ASIACRYPT 2019, Part I*, volume 11921 of *LNCS*, pages 521–551. Springer, Heidelberg, December 2019.

Thijs Laarhoven, Michele Mosca, and Joop van de Pol. Solving the shortest vector problem in lattices faster using quantum search. In Philippe Gaborit, editor, *Post-Quantum Cryptography - 5th International Workshop, PQCrypto 2013*, pages 83–101. Springer, Heidelberg, June 2013.

Ashley Montanaro.

Quantum-walk speedup of backtracking algorithms. *Theory Comput.*, 14(1):1–24, 2018.

National Institute of Standards and Technology.

Submission requirements and evaluation criteria for the Post-Quantum Cryptography standardization process.

```
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/
call-for-proposals-final-dec-2016.pdf, December 2016.
```


John Preskill.

Quantum Computing in the NISQ era and beyond. *Quantum*, 2:79, August 2018.

Christof Zalka.

Grover's quantum searching algorithm is optimal.

Intro	Q. Cryptanalysis	Enumeration	Q. Tree Search	Q. Enum	Estimates	Conclusion
000	0000	000	000	00000	00000	000

Phys. Rev. A, 60:2746-2751, Oct 1999.